SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>RW Wash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Blanket and roller wash</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains solvent naphtha petroleum, heavy aromatic)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses
Use according to manufacturer’s directions. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Cleaning of lithographic printing blankets and rollers.

Details of the supplier of the safety data sheet

Registered company name: GSB Chemical Co.
Address: 84 Camp Road Broadmeadows 3047 VIC Australia
Telephone: +61 3 9457 1125 (8am-5pm, Monday - Friday)
Fax: +61 3 9459 7978
Website: Not Available
Email: info@gsbchem.com.au

Emergency telephone number

Association / Organisation: Not Available
Emergency telephone numbers: +61 3 9457 1125 (8am-5pm, Monday - Friday)
Other emergency telephone numbers: 13 11 26 (After hours)

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

COMBUSTIBLE LIQUID, regulated for storage purposes only

Poisons Schedule: S5
GHS Classification: STOT - SE (Narcosis) Category 3, Aspiration Hazard Category 1, Acute Aquatic Hazard Category 1, Chronic Aquatic Hazard Category 1

Label elements

GHS label elements

SIGNAL WORD: DANGER

Hazard statement(s)

H336 May cause drowsiness or dizziness
H304 May be fatal if swallowed and enters airways
H400 Very toxic to aquatic life
H410 Very toxic to aquatic life with long lasting effects
AUH066 Repeated exposure may cause skin dryness and cracking

Precautionary statement(s) Prevention

...Continued...
Precautionary statement(s) Response

P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P331 Do NOT induce vomiting.
P312 Call a POISON CENTER or doctor/physician if you feel unwell.
P391 Collect spillage.

Precautionary statement(s) Storage

P405 Store locked up.
P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64742-48-9</td>
<td>>60</td>
<td>naphtha petroleum, heavy, hydrotreated</td>
</tr>
<tr>
<td>64742-94-5</td>
<td>10–<30</td>
<td>solvent naphtha petroleum, heavy aromatic</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obdunion) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pC02 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES
Extinguishing media
- Water spray or fog.
- Alcohol stable foam.
- Dry chemical powder.
- Carbon dioxide.
Do not use a water jet to fight fire.

Special hazards arising from the substrate or mixture
| Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result |

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acid smoke.
- Mists containing combustible materials may be explosive.
- Combustion products include carbon dioxide (CO2) other pyrolysis products typical of burning organic material.
- Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills
- Environmental hazard - contain spillage.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Environmental hazard - contain spillage.
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Does not contain low boiling substance:
- Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.
- Check for bulging containers.
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- DO NOT allow clothing wet with material to stay in contact with skin
- Electrostatic discharge may be generated during pumping - this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
When handling, DO NOT eat, drink or smoke.
> Keep containers securely sealed when not in use.
> Avoid physical damage to containers.
> Always wash hands with soap and water after handling.
> Work clothes should be laundered separately.
> Use good occupational work practice.
> Observe manufacturer’s storage and handling recommendations contained within this SDS.
> Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

> Store in original containers.
> Keep containers securely sealed.
> Store in a cool, dry, well-ventilated area.
> Store away from incompatible materials and foodstuffs containers.
> Protect containers against physical damage and check regularly for leaks.
> Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

> Metal can or drum
> Packaging as recommended by manufacturer.
> Check all containers are clearly labelled and free from leaks.

Storage incompatibility

> Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, heavy,</td>
<td>Naphtha, hydrotreated</td>
<td>171 ppm</td>
<td>171 ppm</td>
<td>570 ppm</td>
</tr>
<tr>
<td>hydrotreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aromatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, heavy,</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>hydrotreated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>aromatic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- “Removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc.</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>evaporating from tank (in still air)</td>
<td></td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of...
solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly.

Skin protection
See Hand protection below

Hands/feet protection
- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material cannot be calculated in advance and has therefore to be checked prior to the application.

The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- Frequency and duration of contact,
- Chemical resistance of glove material,
- Glove thickness and
- Dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection
See Other protection below

Other protection
- Overalls.
- PVC apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Thermal hazards
Not Available

Respiratory protection
Not Available

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Water-white liquid with a mild characteristic odour; miscible with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>156-214</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>67</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Combustible,</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>7</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>0.8</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>0.04 @25C</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>>01miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>4.3</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>>95%</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
SECTION 10 STABILITY AND REACTIVITY

<table>
<thead>
<tr>
<th>Reactivity</th>
<th>See section 7</th>
</tr>
</thead>
</table>
| Chemical stability | - Unstable in the presence of incompatible materials.
 - Product is considered stable.
 - Hazardous polymerisation will not occur. |
| Possibility of hazardous reactions | See section 7 |
| Conditions to avoid | See section 7 |
| Incompatible materials | See section 7 |
| Hazardous decomposition products | See section 5 |

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

<table>
<thead>
<tr>
<th>RW Wash</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dermal (Rat) LD50: >2000 mg/kg²</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>Oral (Rat) LD50: >2000 mg/kg²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>naphtha petroleum, heavy, hydrotreated</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dermal (rabbit) LD50: >1900 mg/kg¹</td>
<td>[CCINFO-Shell]</td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: >4500 mg/kg¹</td>
<td>[EXXON]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>solvent naphtha petroleum, heavy aromatic</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dermal (rat) LD50: >2000 mg/kg²</td>
<td>[PETROFIN]</td>
</tr>
<tr>
<td></td>
<td>Inhalation (rat) LC50: >0.59 mL/L.4h²</td>
<td>Eye (rabbit): Irritating</td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: >2000 mg/kg²</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- ¹ Value obtained from Europe ECHA Registered Substances - Acute toxicity
- ² Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

- Acute Toxicity
- Skin irritation/Corrosion
- Carcinogenicity
- Reproductivity
SECTIO N 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, heavy, hydrotreated</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>640mg/L</td>
<td>2</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.580mg/L</td>
<td>2</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.760mg/L</td>
<td>2</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>0.940</td>
<td>2</td>
</tr>
</tbody>
</table>

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For Hydrocarbons: log Kow 1, BCF<10. For Aromatics: log Kow 2-3. BCF 25-200. For C5 and greater alkanes: log Kow 3-4.5. BCF 100-1,500. For Alkanes, Benzene, Toluene, Ethylbenzene, Xylene (BTEX): Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes, they produce water, methane and carbon dioxide. Anaerobic degradation is slower than aerobic. Biodegradation can eliminate the contaminants without dispersing them throughout the environment. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Hydrocarbons with condensed ring structures, such as PAHs (polycyclic aromatic hydrocarbons) with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation. Straight chain hydrocarbons and aromatics degrade more readily than highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilization and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialized hydrocarbon degraders; n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>LOW (BCF = 159)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

SECTIO N 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

<table>
<thead>
<tr>
<th>Product / Packaging disposal</th>
<th>Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduction</td>
</tr>
<tr>
<td></td>
<td>Reuse</td>
</tr>
<tr>
<td></td>
<td>Recycling</td>
</tr>
</tbody>
</table>
Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

![Marine Pollutant](image)

HAZCHEM <3Z

Land transport (ADG)

UN number	3082
Packing group	III
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains solvent naphtha petroleum, heavy aromatic)
Environmental hazard	No relevant data
Transport hazard class(es)	Class 9
Subrisk Not Applicable	
Special precautions for user	Special provisions 179 274 331 335 AU01
Limited quantity 5 L |

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in:

- (a) packagings;
- (b) IBCs; or
- (c) any other receptacle not exceeding 500 kg (L).

- Australian Special Provisions (SF AU01) - ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

UN number	3082
Packing group	III
UN proper shipping name	Environmentally hazardous substance, liquid, n.o.s. * (contains solvent naphtha petroleum, heavy aromatic)
Environmental hazard	No relevant data
Transport hazard class(es)	ICAO/IATA Class 9
ICAO / IATA Subrisk Not Applicable	
ERG Code 9L	
Special precautions for user	Cargo Only Packing Instructions 964
Cargo Only Maximum Qty / Pack 450 L
Passenger and Cargo Packing Instructions 964
Passenger and Cargo Maximum Qty / Pack 450 L
Passenger and Cargo Limited Quantity Packing Instructions Y964
Passenger and Cargo Limited Maximum Qty / Pack 30 kg G |

Sea transport (IMDG-Code / GGSee)

UN number	3082
Packing group	III
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains solvent naphtha petroleum, heavy aromatic)
Environmental hazard	Marine Pollutant
SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>NAPHTHA PETROLEUM, HEAVY, HYDROTREATED(64742-48-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC(64742-94-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
</tr>
</tbody>
</table>

National Inventory

<table>
<thead>
<tr>
<th>Country</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (naphtha petroleum, heavy, hydrotreated; solvent naphtha petroleum, heavy aromatic)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (naphtha petroleum, heavy, hydrotreated)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

- Y = All ingredients are on the inventory
- N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, heavy, hydrotreated</td>
<td>101795-02-2, 64742-48-9.</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC – TWA: Permissible Concentration-Time Weighted Average
- PC – STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit
- IDLH: Immediately Dangerous to Life or Health Concentrations
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index