SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>1104 Multi UV Wash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Product Code: JdS Blk3, pg 105, E1104, UV Blanket & Roller Wash</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

- Use according to manufacturer’s directions.
- The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.
- Ink Resin Removal. Swabbed on.

Details of the supplier of the safety data sheet

Registered company name

GSB Chemical Co.

Address

84 Camp Road Broadmeadows 3047 VIC Australia

Telephone

+61 3 9457 1125 (8am-5pm, Monday - Friday)

Fax

+61 3 9459 7978

Website

Not Available

Email

info@gsbchem.com.au

Emergency telephone number

Emergency telephone numbers

+61 3 9457 1125 (8am-5pm, Monday - Friday)

Other emergency telephone numbers

13 11 26 (After hours)

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

GHS Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 4</td>
<td>Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/ Irritation Category 2, Eye Irritation Category 2A, STOT - SE (Resp. In.) Category 3, STOT - SE (Narcosis) Category 3, Aspiration Hazard Category 1, Chronic Aquatic Hazard Category 3</td>
</tr>
</tbody>
</table>

Pictogram

GHS label elements

Signal word

DANGER

Hazard statement(s)

H302 Harmful if swallowed
H312 Harmful in contact with skin
H332 Harmful if inhaled
H315 Causes skin irritation
H319 Causes serious eye irritation
H335 May cause respiratory irritation
H336 May cause drowsiness or dizziness

Continued...
Precautionary statement(s) Prevention

P271 Use only outdoors or in a well-ventilated area.
P261 Avoid breathing dust/fume/gas/mist/vapours/spray.
P270 Do not eat, drink or smoke when using this product.
P273 Avoid release to the environment.
P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P302+P352 IF ON SKIN: Wash with plenty of soap and water.
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P330 Rinse mouth.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P337+P313 If eye irritation persists: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P390 Discontinue use if symptoms persist.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P360 Wash contaminated clothing before reuse.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P330+P313 If skin irritation occurs: Get medical advice/attention.
P331 Do NOT induce vomiting.
P337+P313 If eye irritation persists: Get medical advice/attention.
P332+P313 If skin irritation occurs: Get medical advice/attention.
P362 Take off contaminated clothing and wash before reuse.
P363 Wash contaminated clothing before reuse.

Precautionary statement(s) Storage

P403+P233 Store in a well-ventilated place. Keep container tightly closed.
P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64742-95-6</td>
<td>30-60</td>
<td>naphtha petroleum, light aromatic solvent</td>
</tr>
<tr>
<td>111-76-2</td>
<td>15-30</td>
<td>ethylene glycol monobutyl ether</td>
</tr>
<tr>
<td>83730-60-3</td>
<td>15-30</td>
<td>dipropylene glycol monomethyl ether</td>
</tr>
<tr>
<td>Not Available</td>
<td><10</td>
<td>non-ionic surfactants and deodorisers</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion

If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
- Seek medical advice.
Avoid giving milk or oils.
Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

- Avoid giving milk or oils.
- Avoid giving alcohol.

Followed acute or short term repeated exposures to ethylene glycol monoalkyl ethers and their acetates:
- Hepatic metabolism produces ethylene glycol as a metabolite.
- Clinical presentation, following severe intoxication, resembles that of ethylene glycol exposures.
- Monitoring the urinary excretion of the alkoxyacetic acid metabolites may be a useful indication of exposure. [Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Water spray or fog.
- Alcohol stable foam.
- Dry chemical powder.
- Carbon dioxide.

Special hazards arising from the substrate or mixture

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If it safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acid smoke.
- Mists containing combustible materials may be explosive.
- Combustion products include; carbon dioxide (CO2) other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acid smoke. May emit poisonous fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.
SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

object

Containers, even those that have been emptied, may contain explosive vapours.

> Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

> Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

> Check for bulging containers.

> Vent periodically

> Always release caps or seals slowly to ensure slow dissipation of vapours

> DO NOT allow clothing wet with material to stay in contact with skin

> Electrostatic discharge may be generated during pumping - this may result in fire.

> Ensure electrical continuity by bonding and grounding (earthing) all equipment.

> Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then "< 7 m/sec).

> Avoid splash filling.

> Do NOT use compressed air for filling discharging or handling operations.

> Avoid all personal contact, including inhalation.

> Wear protective clothing when risk of exposure occurs.

> Use in a well-ventilated area.

> Prevent concentration in hollows and sumps.

> DO NOT enter confined spaces until atmosphere has been checked.

> Avoid smoking, naked lights or ignition sources.

> Avoid contact with incompatible materials.

> When handling, DO NOT eat, drink or smoke.

> Keep containers securely sealed when not in use.

> Avoid physical damage to containers.

> Always wash hands with soap and water after handling.

> Work clothes should be laundered separately.

> Use good occupational work practice.

> Observe manufacturer’s storage and handling recommendations contained within this SDS.

> Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

> Store in original containers.

> Keep containers securely sealed.

> No smoking, naked lights or ignition sources.

> Store in a cool, dry, well-ventilated area.

> Store away from incompatible materials and foodstuff containers.

> Protect containers against physical damage and check regularly for leaks.

> Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

> Metal can or drum

> Packaging as recommended by manufacturer.

> Check all containers are clearly labelled and free from leaks.

Storage incompatibility

> Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>ethylene glycol monobutyl ether</td>
<td>2-Butoxyethanol</td>
<td>96.9 mg/m³ / 20 ppm</td>
<td>242 mg/m³ / 50 ppm</td>
<td>Not Available</td>
<td>Sk</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>dipropylene glycol monomethyl ether</td>
<td>(2-Methoxymethylethoxy) propanol</td>
<td>308 mg/m³ / 50 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Sk</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>Aromatic hydrocarbon solvents; (High flash naphtha distillates; Solvent naphtha (petroleum), light aromatic)</td>
<td>3.1 ppm</td>
<td>34 ppm</td>
<td>410 ppm</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>Butoxyethanol, 2-; (Glycol ether EB)</td>
<td>20 ppm</td>
<td>20 ppm</td>
<td>700 ppm</td>
</tr>
<tr>
<td>dipropylene glycol monomethyl ether</td>
<td>Dipropylene glycol methyl ether</td>
<td>150 ppm</td>
<td>150 ppm</td>
<td>510 ppm</td>
</tr>
</tbody>
</table>

Exposure controls

<table>
<thead>
<tr>
<th>Appropriate engineering</th>
<th>Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly</th>
</tr>
</thead>
</table>
Effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1.25-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favourable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion

1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use
4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59] [AS/NZS 1336 or national equivalent]

Eye and face protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Suitable durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long term use.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Hands/feet protection

- See Hand protection below

Skincare

- See Hand protection below

Body protection

- Overall.
- PVC apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Other protection

- Not Available

Thermal hazards

- Not Available

Continued...
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Clear liquid with a characteristic odour; miscible with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>0.89</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>150-196</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flammability</td>
<td>Combustible</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>95</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>#01miscible</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>4.3</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity See section 7
Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.
Possibility of hazardous reactions See section 7
Conditions to avoid See section 7
Incompatible materials See section 7
Hazardous decomposition products See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation hazard is increased at higher temperatures. Inhalation of high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomitilng and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Dipropylene glycol monomethyl ether (DPME) may cause drowsiness from which rapid recovery occurs, and in few cases brain and nerves impairment. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Ethylene glycol monobutyl ether can destroy the blood cells with long term exposure. It also causes eye, nose and throat discomfort. Higher doses can cause blood in the urine.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Severe acute exposure to ethylene glycol monobutyl ether, by ingestion, may cause kidney damage, haemoglobinuria, (blood in urine) and is potentially fatal. Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Data Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1104 Multi UV Wash</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>Oral (rat) LD50: 5400 mg/kg<sup>[2]</sup></td>
<td>Not Available</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>Oral (rat) LD50: >1900 mg/kg<sup>[1]</sup></td>
<td>Nil reported</td>
</tr>
<tr>
<td></td>
<td>Inhalation (rat) LC50: >3670 ppm/8 h<sup>[2]</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: >4500 mg/kg<sup>[1]</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhalation (rat) LC50: >450 mg/4 h<sup>[2]</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: 250 mg/kg<sup>[2]</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: >19000 mg/kg<sup>[1]</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inhalation (rat) LC50: >45 mg<sup>[2]</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin (rabbit): 500 mg, open; mild</td>
<td></td>
</tr>
<tr>
<td>non-ionic surfactants and deodorisers</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. * Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Acute Toxicity
- Ethylene glycol monobutyl ether: Oral (rat) LD50: >4500 mg/kg^[1]
- Dermal (rabbit) LD50: >1900 mg/kg^[1]

Skin Irritation/Corrosion
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5135 mg/kg^[1] (Dermal), 5130 mg/kg^[1] (vapour), 5135 mg/kg^[2] (dust)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Serious Eye Damage/Irritation
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Respiratory or Skin sensitisation
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Mutagenicity
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Aspiration Hazard
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Legend:
- ✔️ - Data available but does not fill the criteria for classification
- ✗ - Data required to make classification available
- 🛠️ - Data Not Available to make classification

CARCINOGENICITY
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

REPRODUCTIVITY
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

STOT - Single Exposure
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

STOT - Repeated Exposure
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Aspiration Hazard
- Ethylene glycol monobutyl ether: Oral (rat) LD50: 5130 mg/kg^[1] (Dermal), 5135 mg/kg^[2] (vapour)
- Dipropylene glycol monomethyl ether: Oral (rat) LD50: 5135 mg/kg^[2] (dust)

Legend:
- ✔️ - Data available but does not fill the criteria for classification
- ✗ - Data required to make classification available
- 🛠️ - Data Not Available to make classification
Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>6.14mg/L</td>
<td>1</td>
</tr>
<tr>
<td>aromatic solvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naphtha petroleum, light</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic</td>
<td>3.29mg/L</td>
<td>1</td>
</tr>
<tr>
<td>aromatic solvent</td>
<td></td>
<td></td>
<td>plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>naphtha petroleum, light</td>
<td>EC10</td>
<td>72</td>
<td>Algae or other aquatic</td>
<td>1.130mg/L</td>
<td>1</td>
</tr>
<tr>
<td>aromatic solvent</td>
<td></td>
<td></td>
<td>plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>222.042mg/L</td>
<td>3</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>164mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic</td>
<td>720mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>EC0</td>
<td>24</td>
<td>Crustacea</td>
<td>>1000mg/L</td>
<td>4</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>EC10</td>
<td>24</td>
<td>Algae or other aquatic</td>
<td>>1000mg/L</td>
<td>4</td>
</tr>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>EC100</td>
<td>24</td>
<td>Crustacea</td>
<td>>1000mg/L</td>
<td>4</td>
</tr>
<tr>
<td>dipropylene glycol monomethyl</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>1307.253mg/L</td>
<td>3</td>
</tr>
<tr>
<td>ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dipropylene glycol monomethyl</td>
<td>LC50</td>
<td>96</td>
<td>Algae or other aquatic</td>
<td>8843.203mg/L</td>
<td>3</td>
</tr>
<tr>
<td>ether</td>
<td></td>
<td></td>
<td>plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dipropylene glycol monomethyl</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>1000mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dipropylene glycol monomethyl</td>
<td>LC50</td>
<td>96</td>
<td>Algae or other aquatic</td>
<td>>969mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ether</td>
<td></td>
<td></td>
<td>plants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFS range from 1.47 for DPnB to 3.16 for DPMFA and TPM, indicating low bioaccumulation.

Henry's Law Constants are low for all category members, ranging from 5.7 x 10^-9 atm-m3/mole for TPM to 2.7 x 10^-9 atm-m3/mole for PnB.

Environmental Fate: Most are liquids at room temperature and all are water-soluble.

Atmospheric Fate: In air, the halflife due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB.

Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are "readily biodegradable" under aerobic conditions. In soil, biodegradation is rapid for PAHs.

Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acid acute toxicity testing indicates low toxicity for both ethers and acetates.

For Ethylene Glycol Monomethyl Ethers and their Acetates:

log BCFS 4.63 to 7.02. LC50: 94 to > 5000 mg/L (aqueous species).

Members of this category include ethylene glycol propyl ether (EGP), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE).

Environmental Fate: Aquatic - The ethers possess no functional groups that are readily subject to hydrolysis in the presence of water. The acetates possess an ester group that hydrolyses in neutral ambient water under abiotic conditions. Will partition predominately to water and, to a lesser extent, to air and soil. Soils - Highly mobile in soil.

Ecotoxicity: Ethylene glycol monomethyl ethers and their acetates are readily biodegradable. The physical chemistry and environmental fate properties indicate that category members will not persist or bioconcentrate in the environment. Ethylene glycol acetates do not hydrolyze rapidly into their corresponding glycol ethers in water under environmental conditions. Glycol ethers are not acutely toxic to fish, specifically, zebra fish, rainbow trout and water fleas. Population changes were noted in freshwater and green algae species.

For Glycol Ethers:

Environmental Fate: Several glycol ethers have been shown to biodegrade however; biodegradation slows as molecular weight increases. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes.

Atmospheric Fate: Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photo-degradation (atmospheric half lives < 2.4-2.5 hr). Aquatic Fate: In water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from 1.73 to 0.51).

Ecotoxicity: Tri- and tetra ethylene glycol ethers are "practically non-toxic" to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the butyl ethers. Glycols exhibit a high oxygen demand for decomposition and once released to the environment death of aquatic organisms occurs if dissolved oxygen is depleted.

For Hydrocarbons:

log Kow 1. BCF=10.

For Aromatics: log Kow 2.3.

BCF 25-200. For C8 and greater alkanes: log Kow 3-4.5. BCF 100-1,500.

For Alkanes, Benzene, Toluene, Ethylbenzene, Xylene (BTEX):

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide. Biodegradation can eliminate the contaminants without dispersing them throughout the environment.
Drinking Water Standards: hydrocarbon total: 10 µg/l (UK max.).

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>LOW (Half-life = 56 days)</td>
<td>LOW (Half-life = 1.37 days)</td>
</tr>
<tr>
<td>dipropylene glycol monomethyl ether</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>LOW (BCF = 2.51)</td>
</tr>
<tr>
<td>dipropylene glycol monomethyl ether</td>
<td>LOW (BCF = 100)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylene glycol monobutyl ether</td>
<td>HIGH (KOC = 1)</td>
</tr>
<tr>
<td>dipropylene glycol monomethyl ether</td>
<td>LOW (KOC = 10)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.

Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- **Combustible Liquid**: COMBUSTIBLE LIQUID, regulated for storage purposes only
- Marine Pollutant: NO
- HAZCHEM: Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Pollution Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>naphtha petroleum, light aromatic solvent</td>
<td>Y</td>
</tr>
</tbody>
</table>

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture
Section 16 Other Information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>25550-14-5, 64742-95-6.</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- **PC--TWA**: Permissible Concentration-Time Weighted Average
- **PC--STEL**: Permissible Concentration-Short Term Exposure Limit
- **IARC**: International Agency for Research on Cancer
- **ACGIH**: American Conference of Governmental Industrial Hygienists
- **STEL**: Short Term Exposure Limit
- **TEEL**: Temporary Emergency Exposure Limit,
- **IDLH**: Immediately Dangerous to Life or Health Concentrations
- **OSF**: Odour Safety Factor
- **NOAEL**: No Observed Adverse Effect Level
- **LOAEL**: Lowest Observed Adverse Effect Level
- **TLV**: Threshold Limit Value
- **L0D**: Limit Of Detection
- **OTV**: Odour Threshold Value
- **BCF**: BioConcentration Factors
- **BEI**: Biological Exposure Index