SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>1082 Wash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Use according to manufacturer's directions. Cleaning of lithographic printing blankets and rollers. Applied via a cloth, squirt bottle or automatic blanket washing system.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>GSB Chemical Co.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>84 Camp Road Broadmeadows 3047 VIC Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 3 9457 1125 (8am-5pm, Monday - Friday)</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 3 9459 7978</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>info@gsbchem.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>+61 3 9457 1125 (8am-5pm, Monday - Friday)</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>13 11 26 (After hours)</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

Poisons Schedule

S5

GHS Classification

Skin Corrosion/Inflammation Category 2, Eye Irritation Category 2A, STOT - SE (Narcosis) Category 3, Aspiration Hazard Category 1

Legend:

Label elements

<table>
<thead>
<tr>
<th>GHS label elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Label Icon]</td>
</tr>
</tbody>
</table>

SIGNAL WORD: DANGER

Hazard statement(s)

H315 Causes skin irritation
H319 Causes serious eye irritation
H336 May cause drowsiness or dizziness
H304 May be fatal if swallowed and enters airways
AJH066 Repeated exposure may cause skin dryness and cracking

Precautionary statement(s)

Prevention

P271 Use only outdoors or in a well-ventilated area.
P261 Avoid breathing dust/fume/gas/mist/vapours/spray.
P280 Wear protective gloves/protective clothing/eye protection/face protection.

Continued...
Precautionary statement(s) Response

P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.

P311 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P312 Call a POISON CENTER or doctor/physician if you feel unwell.

P337+P313 If skin irritation occurs: Get medical advice/attention.

P332+P330 If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

P405 Store locked up.

P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P61 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% (weight)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64742-47-8</td>
<td>30-60</td>
<td>distillates, petroleum, light, hydrotreated</td>
</tr>
<tr>
<td>Not Available</td>
<td>30-60</td>
<td>vegetable oil esters</td>
</tr>
<tr>
<td>Not Available</td>
<td><10</td>
<td>non-ionic surfactants</td>
</tr>
<tr>
<td>120-40-1</td>
<td><10</td>
<td>lauric diethanolamide</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patent down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully.

Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obdurator) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.

Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.

A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.

Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g.
Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Water spray or fog.
- Alcohol stable foam.
- Dry chemical powder.
- Carbon dioxide.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result</td>
</tr>
</tbody>
</table>

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.
- Combustion products include carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Containers, even those that have been emptied, may contain explosive vapours.
- DO NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin.
- Electrostatic discharge may be generated during pumping - this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<1 m/sec until fill pipe submerged to twice its diameter, then < 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
Avoid physical damage to containers.
Always wash hands with soap and water after handling.
Work clothes should be laundered separately.
Use good occupational work practice.
Observe manufacturer’s storage and handling recommendations contained within this SDS.
Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Avoid reaction with oxidising agents
Not Available
0.045 ppm
Notes
Air Speed:
Not Available
TEEL-2
1: Disturbing room air currents
Ingredient
Upper end of the range
Not Available
Not Available
Not Available
STEL
5 mg/m³
0.5 ppm
Bis(2-hydroxyethyl)dodecanamide, N,N-
Not Available
2: Contaminants of high toxicity
Material name
Revised IDLH
Peak
46 ppm
Ingredients at levels determined not to be hazardous
Not Available
Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>distillates, petroleum, light, hydrotreated</td>
<td>Oil mist, refined mineral</td>
<td>5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>lauric diethanolamide</td>
<td>Bis(2-hydroxyethyl)dodecanamide, N,N-</td>
<td>0.045 ppm</td>
<td>0.5 ppm</td>
<td>46 ppm</td>
</tr>
</tbody>
</table>

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant: Air Speed:

- solvent, vapours, degreasing etc.: evaporating from tank (in still air):
 0.25-0.5 m/s (50-100 f/min.)
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)
 0.5-1 m/s (100-200 f/min.)
- direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)
 1-2.5 m/s (200-500 f/min.)
- grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)
 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
</tbody>
</table>
Personal protection
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lenses as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lenses should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection
- Eye wash unit.
- Skin cleansing cream.
- Barrier cream.
- P.V.C. apron.
- Overalls.
- Chemical goggles.
- Safety glasses with side shields.
- Chemical goggles.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Hands/feet protection
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity
- contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Skin protection
- See Hand protection below
- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber
- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection
- See Other protection below
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- All possible skin contact.

Other protection
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Thermal hazards
- Not Available

Respiratory protection
- Not Available

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Yellow / brown liquid with a mild characteristic odour; miscible with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>225-350</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>>100</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Fast</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>225-350</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>>100</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Fast</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to data from the controlling source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

NOTE:
- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
- Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.
- Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- Inhalation hazard is increased at higher temperatures.
- Inhalation high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.
- Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
- Inhalation of droplets or aerosols may cause discomfort and may produce chemical inflammation of the lungs.
- Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Ingestion
- Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous membranes.
- Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.
- Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed.

Skin Contact
- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- The material may accentuate any pre-existing dermatitis condition.

Eye
- This material can cause eye irritation and damage in some persons. Non-ionic surfactants can cause burning of the cornea, which may cause discomfort normally caused by other agents and leads to corneal injury. Irritation varies depending on the duration of contact, the nature and concentration of the surfactant.
- Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.

Chronic
- Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.
- Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
- There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population.
- Constant or exposure over long periods to mixed hydrocarbons may produce stupa with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.
- Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

1082 Wash
- TOXICITY: Not Available
- IRRITATION: Not Available

Hydrotreated, distillates, petroleum, light, vegetable oil esters
- TOXICITY: Not Available
- IRRITATION: Not Available

1082 Wash

Compatibility
- Not Applicable

Flammability
- Upper Explosive Limit (%): Not Available
- Lower Explosive Limit (%): Not Available

Oxidising properties
- Surface Tension (dyn/cm or mN/m): Not Available

Vapour pressure (kPa)
- 0.04 @20°C

Solubility in water (g/L)
- #01miscible

Volatile Component (%vol)
- Not Available

pH as a solution (1%)
- Not Available

Chemwatch: 21-9545

Version No: 5.1.1.1

Page 6 of 9

Issue Date: 08/09/2015

Print Date: 09/11/2015

Continued...
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>distillates, petroleum, light, hydrotreated</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>2.20mg/L</td>
<td>4</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>2.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>ca 3.2mg/L</td>
<td>2</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>23.276mg/L</td>
<td>3</td>
</tr>
</tbody>
</table>

Legend:
- + Data available but does not fill the criteria for classification
- − Data required to make classification available
- ✘ Data Not Available to make classification

- > For Hydrocarbons: log Kow 1. BCF=10.
- > For Aromatics: log Kow 2-3.
- > BCF 20-200. For C5 and greater alkanes: log Kow 3-4. BCF 100-1,500.

Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes, they produce water, methane and carbon dioxide. Anaerobic degradation is slower than aerobic. Biodegradation can eliminate the contaminants without dispersing them throughout the environment. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Hydrocarbons with condensed ring structures, such as PAHs (polycyclic aromatic hydrocarbons) with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation. Straight chain hydrocarbons and aromatics degrade more readily than highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable, n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilization and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialized hydrocarbon degraders; n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs.

Atmospheric Fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkylbenzenes and substituted benzenes have half-lives of 1 day or less. Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkanes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis.

Aquatic Fate: Volatilization half-life predicted as 7 days (ponds), 1.5 days (rivers), 6 days (lakes). Volatilization rate of naphthalene and its substituted derivatives estimated to be slower. The lower molecular weight hydrocarbons are expected to form a "slip" on the surface of waters after release in calm seas which is expected to evaporate and enter the atmosphere where it will be degraded through photochemical reactions with hydroxy radicals. Ecotoxicity: Effects on freshwater/semiaquatic organisms: Hydrocarbons are hydrophobic. Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. Toxic effects are often observed in species such as blue mussel, water fleas, freshwater green algae, marine copepods and amphipods.

Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.).

DO NOT discharge into sewers or waterways.
SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

<table>
<thead>
<tr>
<th>Product / Packaging disposal</th>
<th>Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A Hierarchy of Controls seems to be common - the user should investigate:</td>
</tr>
<tr>
<td></td>
<td>- Reduction</td>
</tr>
<tr>
<td></td>
<td>- Reuse</td>
</tr>
<tr>
<td></td>
<td>- Recycling</td>
</tr>
<tr>
<td></td>
<td>- Disposal (if all else fails)</td>
</tr>
</tbody>
</table>

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Authority for disposal. Bury or incinerate residue at an approved site. Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Pollution Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>lauric diethanolamide</td>
<td>Y</td>
</tr>
</tbody>
</table>

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED(64742-47-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>Source</th>
<th>Australia Exposure Standards</th>
<th>Australia Inventory of Chemical Substances (AICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
<td>International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs</td>
</tr>
</tbody>
</table>

- Not Applicable
- Not Applicable

LAURIC DIETHANOLAMIDE(120-40-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>Source</th>
<th>Australia Inventory of Chemical Substances (AICS)</th>
</tr>
</thead>
</table>

- Not Applicable

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (distillates, petroleum, light, hydrotreated; lauric diethanolamide)</td>
</tr>
<tr>
<td>China - IEGSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Y</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

Y = All ingredients are on the inventory

N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Continued...
Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC — TWA: Permissible Concentration-Time Weighted Average
PC — STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOID: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index