1061 Wash

GSB Chemical Co.

Chemwatch: 21-9542
Version No: 5.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>1061 Wash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses | Use according to manufacturer’s directions. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Cleaning of lithographic printing blankets and rollers. Applied via a cloth, squirt bottle or automatic blanket washing system |

Details of the supplier of the safety data sheet

Registered company name | GSB Chemical Co. |
Address | 84 Camp Road Broadmeadows 3047 VIC Australia |
Telephone | +61 3 9457 1125 (8am-5pm, Monday - Friday) |
Fax | +61 3 9459 7978 |
Website | Not Available |
Email | info@gsbchem.com.au |

Emergency telephone number

Association / Organisation | Not Available |
Emergency telephone numbers | +61 3 9457 1125 (8am-5pm, Monday - Friday) |
Other emergency telephone numbers | 13 11 26 (After hours) |

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

COMBUSTIBLE LIQUID, regulated for storage purposes only

Poisons Schedule | S5 |
GHS Classification | Reproductive Toxicity Category 2, STOT - SE (Narcosis) Category 3, Aspiration Hazard Category 1, Chronic Aquatic Hazard Category 3 |

Label elements

GHS label elements

SIGNAL WORD | DANGER |

Hazard statement(s)

H361 | Suspected of damaging fertility or the unborn child |
H336 | May cause drowsiness or dizziness |
H304 | May be fatal if swallowed and enters airways |
H412 | Harmful to aquatic life with long lasting effects |
AUH066 | Repeated exposure may cause skin dryness and cracking |

Precautionary statement(s)

Prevention | P201 | Obtain special instructions before use. |
Precautionary statement(s) Response

P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P306+P313 IF exposed or concerned: Get medical advice/attention.
P311 DO NOT induce vomiting.
P312 Call a POISON CENTER or doctor/physician if you feel unwell.
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Precautionary statement(s) Storage

P405 Store locked up.
P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixture

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64742-88-7</td>
<td>30-60</td>
<td>solvent naphtha petroleum, medium aliphatic</td>
</tr>
<tr>
<td>64742-94-5</td>
<td>30-60</td>
<td>solvent naphtha petroleum, heavy aromatic</td>
</tr>
<tr>
<td>120-40-1</td>
<td><10</td>
<td>lauric diethanolamide</td>
</tr>
<tr>
<td>Not Available</td>
<td><10</td>
<td>non-ionic surfactant</td>
</tr>
<tr>
<td>Not Available</td>
<td>balance</td>
<td>ingredients at levels determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmaceutically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Following acute or short term repeated exposures to toluene:
- Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1:3 except in adipose where the proportion is 8:10.
- Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours.
- Primary threat to life from ingestion and/or inhalation is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or
poor arterial blood gases (pO2 <50 mm Hg or pCO2 > 50 mm Hg) should be intubated.

Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.

A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.

Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

Lavage is indicated in patients who require decontamination; ensure use.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Cresol in urine</td>
<td>0.5 mg/L</td>
<td>End of shift</td>
<td>B</td>
</tr>
<tr>
<td>Hippuric acid in urine</td>
<td>1.6 g/g creatinine</td>
<td>End of shift</td>
<td>B, NS</td>
</tr>
<tr>
<td>Toluene in blood</td>
<td>0.05 mg/L</td>
<td>Prior to last shift of workweek</td>
<td></td>
</tr>
</tbody>
</table>

NS: Non-specific determinant; also observed after exposure to other material

B: Background levels occur in specimens collected from subjects NOT exposed

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Water spray or fog.
- Alcohol stable foam.
- Dry chemical powder.
- Carbon dioxide.

Special hazards arising from the substrate or mixture
- Fire Incompatibility
 - Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters
- **Fire Fighting**
 - Alert Fire Brigade and tell them location and nature of hazard.
 - Wear full body protective clothing with breathing apparatus.
 - Prevent, by any means available, spillage from entering drains or water course.
 - Use water delivered as a fine spray to control fire and cool adjacent area.
 - Avoid spraying water onto liquid pools.
 - DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

- **Fire/Explosion Hazard**
 - Combustible.
 - Slight fire hazard when exposed to heat or flame.
 - Heating may cause expansion or decomposition leading to violent rupture of containers.
 - On combustion, may emit toxic fumes of carbon monoxide (CO).
 - May emit acid smoke.
 - Mists containing combustible materials may be explosive.
 - Combustion products include carbon dioxide (CO2) other pyrolysis products typical of burning organic material. **Contains low boiling substance**: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acid smoke. May emit poisonous fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

- **Minor Spills**
 - Remove all ignition sources.
 - Clean up all spills immediately.
 - Avoid breathing vapours and contact with skin and eyes.
 - Control personal contact with the substance, by using protective equipment.
 - Contain and absorb spill with sand, earth, inert material or vermiculite.
 - Wipe up.
 - Place in a suitable, labelled container for waste disposal.

- **Major Spills**
 - Moderate hazard.
 - Clear area of personnel and move upwind.
 - Alert Fire Brigade and tell them location and nature of hazard.
 - Wear breathing apparatus plus protective gloves.
 - Prevent, by any means available, spillage from entering drains or water course.
 - No smoking, naked lights or ignition sources.
 - Increase ventilation.
 - Stop leak if safe to do so.
 - Contain spill with sand, earth or vermiculite.
 - Collect recoverable product into labelled containers for recycling.
 - Absorb remaining product with sand, earth or vermiculite.
 - Collect solid residues and seal in labelled drums for disposal.
 - Wash area and prevent runoff into drains.
 - If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Continued...
Safe handling

Containers, even those that have been emptied, may contain explosive vapours.

- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Check for bulging containers.
- Vent periodically.
- Always release caps or seals slowly to ensure slow dissipation of vapours.
- Electrostatic discharge may be generated during pumping - this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (< 1 m/sec until fill pipe submerged to twice its diameter, then < 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

DO NOT allow clothing wet with material to stay in contact with skin.

Electrostatic discharge may be generated during pumping - this may result in fire.

Ensure electrical continuity by bonding and grounding (earthing) all equipment.

Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (< 1 m/sec until fill pipe submerged to twice its diameter, then < 7 m/sec).

Avoid splash filling.

Do NOT use compressed air for filling discharging or handling operations.

Avoid all personal contact, including inhalation.

Wear protective clothing when risk of exposure occurs.

Use in a well-ventilated area.

Prevent concentration in hollows and sumps.

DO NOT enter confined spaces until atmosphere has been checked.

Avoid smoking, naked lights or ignition sources.

Avoid contact with incompatible materials.

When handling, DO NOT eat, drink or smoke.

Keep containers securely sealed when not in use.

Avoid physical damage to containers.

Always wash hands with soap and water after handling.

Work clothes should be laundered separately.

Use good occupational work practice.

Observe manufacturer’s storage and handling recommendations contained within this SDS.

Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Avoid reaction with oxidising agents
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

INOCULANT EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha, petroleum, medium aliphatic</td>
<td>Solvent naphtha, petroleum, medium aliphatic; (Mineral spirits, naphtha)</td>
<td>0.32 mg/m³</td>
<td>3.5 mg/m³</td>
<td>21 mg/m³</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>Bis(2-hydroxyethyl)dodecanamide, N,N-</td>
<td>0.045 ppm</td>
<td>0.5 ppm</td>
<td>46 ppm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha, petroleum, medium aliphatic</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>solvent naphtha, petroleum, heavy aromatic</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>non-ionic surfactant</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>ingredients at levels determined not to be hazardous</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air to the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Continued...
Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfer, welding, spray drain, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1.25 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favourable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion

1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use
4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a report of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lenses as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC: NIOSH Current Intelligence Bulletin 597, AS/NZS 1336 or national equivalent]

Eye and face protection

- Chemical goggles.

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:
- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Hands/feet protection

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- Frequency and duration of contact,
- Chemical resistance of glove material,
- Glove thickness and dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Respiratory protection

Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

- Not Available

See Other protection below
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Water-white liquid with a mild characteristic odour; miscible with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>156-210</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>67</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Combustible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>7</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>0.8</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>0.04 @25C</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>#01miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>4.3</td>
</tr>
<tr>
<td>Vapor pressure (kPa)</td>
<td>0.04 @25C</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>#01miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>4.3</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

- See section 7

Chemical stability

- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions

- See section 7

Conditions to avoid

- See section 7

Incompatible materials

- See section 7

Hazardous decomposition products

- See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

- Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.
- Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.
- Systemic poisoning produced by general anaesthesia is characterised by light-headedness, dizziness, headache, lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, irritability, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced.
- Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000-8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics.
- Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed.
- Inhalation hazard is increased at higher temperatures.
- Inhalation of high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, dizziness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.
- Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
- The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Ingestion

- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)
- Ingestion of petrol hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.
Skin Contact

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
Open cuts, abraded or irritated skin should not be exposed to this material.
The material may accentuate any pre-existing dermatitis condition.
The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time.
Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.
Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to.

Eye

Non-ionic surfactants can cause numbing of the cornea, which masks discomfort normally caused by other agents and leads to corneal injury. Irritation varies depending on the duration of contact, the nature and concentration of the surfactant.
Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.
There is some evidence to suggest that this material can cause eye irritation and damage in some persons.

Chronic

Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.
Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.
There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.
Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population.
Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

TOXICITY

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Species</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha petroleum, medium aliphatic</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>1000mg/L</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.580mg/L</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>EC50</td>
<td>2700 mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ingredients at levels determined not to be hazardous</td>
<td>TOXICITY</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

IRRITATION

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Species</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha petroleum, medium aliphatic</td>
<td>dermal (rat) LD50: 28000 mg/kg*<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>dermal (rat) LD50: >2000 mg/kg<sup>[1]</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>Oral (rat) LD50: 2700 mg/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ingredients at levels determined not to be hazardous</td>
<td>TOXICITY</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 12 ECOLOGICAL INFORMATION

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Species</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha petroleum, medium aliphatic</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>1000mg/L</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>450mg/L</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.580mg/L</td>
</tr>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.760mg/L</td>
</tr>
</tbody>
</table>

Legend:

- Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>lauric diethanolamide</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent naphtha petroleum, heavy aromatic</td>
<td>LOW (BCF = 159)</td>
</tr>
<tr>
<td>lauric diethanolamide</td>
<td>LOW (LogKOW = 2.885)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>lauric diethanolamide</td>
<td>LOW (KOC = 51.65)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state, and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- **Reduction**
- **Reuse**
- **Recycling**
- **Disposal** (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

Note: Recycling and reusing petrochemicals is a complex area and may not always be possible or appropriate. Environmental impact and local regulations should be considered when making decisions on disposal.
SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBUSTIBLE LIQUID</td>
<td>COMBUSTIBLE LIQUID, regulated for storage purposes only</td>
</tr>
<tr>
<td>Marine Pollutant</td>
<td>NO</td>
</tr>
<tr>
<td>HAZCHEM</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO–IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Pollution Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>lauric diethanolamide</td>
<td>Y</td>
</tr>
</tbody>
</table>

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

SOLVENT NAPHTHA PETROLEUM, MEDIUM ALIPHATIC (64742-88-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists
Australia Inventory of Chemical Substances (AICS)

SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC (64742-94-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists
Australia Inventory of Chemical Substances (AICS)

LAURIC DIETHANOLAMIDE (120-40-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

- Not Applicable
- Not Applicable

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDLS</td>
<td>N (solvent naphtha petroleum, medium aliphatic; lauric diethanolamide; solvent naphtha petroleum, heavy aromatic)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (solvent naphtha petroleum, medium aliphatic)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend: Y = All ingredients are on the inventory; N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at:
www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection

Continued...