Sugar Soap Powder **GSB Chemical Co.** Chemwatch: **21-9696**Version No: **3.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 4 Issue Date: 09/04/2014 Print Date: 21/01/2015 Initial Date: Not Available L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Sugar Soap Powder | |-------------------------------|--| | Chemical Name | Not Applicable | | Synonyms | SUGAR SOAP POWDER, Trisodium Phosphate | | Proper shipping name | Not Applicable | | Chemical formula | Not Applicable | | Other means of identification | Not Available | | CAS number | Not Applicable | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Use according to manufacturer's directions. For degreasing surfaces prior to painting. # Details of the manufacturer/importer | Registered company name | GSB Chemical Co. | |-------------------------|--| | Address | 84 Camp Road Broadmeadows 3047 VIC Australia | | Telephone | +61 3 9457 1125 | | Fax | +61 3 9459 7978 | | Website | Not Available | | Email | info@gsbchem.com.au | # **Emergency telephone number** | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | Not Available | | Other emergency telephone numbers | Not Available | # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code. # CHEMWATCH HAZARD RATINGS | - | Min | Max | | |--------------|-----|-----|--------------------------| | Flammability | 1 | | | | Toxicity | 1 | - | 0 = Minimum | | Body Contact | 4 | | 1 = Low | | Reactivity | 1 | | 2 = Moderate
3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | S5 | |------------------------|---------------------------------------------------------------------------------------------------------| | GHS Classification [1] | Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1, Chronic Aquatic Hazard Category 4 | Chemwatch: **21-9696**Version No: **3.1.1.1** Page 2 of 11 Sugar Soap Powder Issue Date: **09/04/2014**Print Date: **21/01/2015** Legend: 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI #### Label elements #### **GHS** label elements DANGER #### Hazard statement(s) | H314 | Causes severe skin burns and eye damage | | |------|--------------------------------------------------------|--| | H318 | Causes serious eye damage | | | H413 | May cause long lasting harmful effects to aquatic life | | # Precautionary statement(s) Prevention | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | |------|----------------------------------------------------------------------------|--| | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | P273 | Avoid release to the environment. | | #### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | |----------------|----------------------------------------------------------------------------------------------------------------------------------| | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider | | P363 | Wash contaminated clothing before reuse. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | #### Precautionary statement(s) Storage P405 Store locked up. # Precautionary statement(s) Disposal P501 Dispose of content Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** Centre. #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |-----------|-----------|---------------------| | 7601-54-9 | 100 | trisodium phosphate | # **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures Chemwatch: 21-9696 Page 3 of 11 Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 21/01/2015 #### Sugar Soap Powder | | ▶ Transport to hospital, or doctor. | |------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. | # Indication of any immediate medical attention and special treatment needed For acute or short-term repeated exposures to highly alkaline materials: - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxvgen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. #### INGESTION: • Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric layage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). #### SKIN AND EYE: ▶ Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] # **SECTION 5 FIREFIGHTING MEASURES** # Extinguishing media - There is no restriction on the type of extinguisher which may be used. - · Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters Fire Fighting #### • Alert Fire Brigade and tell them location and nature of hazard. • Wear breathing apparatus plus protective gloves in the event of a fire. ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. # Fire/Explosion Hazard - ▶ Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive Chemwatch: **21-9696**Page **4** of **11**Issue Date: **09/04/2014**Version No: **3.1.1.1**Print Date: **21/01/2015** #### Sugar Soap Powder - mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). - When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. - Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - ▶ Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - ▶ All movable parts coming in contact with this material should have a speed of less than 1-meter/sec. - A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. - One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours). - Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include:, carbon monoxide (CO), carbon dioxide (CO2), phosphorus oxides (POx), other pyrolysis products typical of burning organic materialMay emit poisonous fumes. May emit corrosive fumes. ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures #### Minor Spills **Major Spills** - ▶ Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. - ▶ Control personal contact with the substance, by using protective equipment. - Use dry clean up procedures and avoid generating dust. - Place in a suitable, labelled container for waste disposal. #### Moderate hazard. - ► CAUTION: Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. - ▶ ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - ▶ If contamination of drains or waterways occurs, advise Emergency Services. Personal Protective Equipment advice is contained in Section 8 of the MSDS. # **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling Safe handling - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. #### Continued... Chemwatch: 21-9696 Page 5 of 11 Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 21/01/2015 #### Sugar Soap Powder - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this MSDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - ▶ Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. - ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance. - ▶ Do not empty directly into flammable solvents or in the presence of flammable vapors. - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. # Other information # ▶ DO NOT store near acids, or oxidising agents - Store in original containers. - ► Keep containers securely sealed. - ▶ Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container - ▶ DO NOT use aluminium or galvanised containers - ▶ Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. ## Trisodium phosphate - ▶ reacts with moisture in air, forming sodium carbonate -store away from extreme humidity - ▶ is strongly caustic in aqueous solution - ► reacts violently with acids - ▶ in contact with certain food products (containing reducing sugars) produces toxic carbon monoxide gas - is incompatible with organic anhydrides, acrylates, alcohols, aldehydes, alkylene oxides, substituted allyls, cresols, caprolactam solution, epichlorohydrin, ethylene dichloride, glycols, isocyanates, ketones, maleic anhydride, nitrates, nitromethane, phenols, vinyl acetate - attacks aluminium, copper, zinc and related alloys in the presence of moisture - ▶ In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas. - ▶ Phosphates are incompatible with oxidising and reducing agents. - Phosphates are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides. - ▶ Partial oxidation of phosphates by oxidizing agents may result in the release of toxic phosphorus oxides. - ▶ Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. #### PACKAGE MATERIAL INCOMPATIBILITIES Storage incompatibility Not Available # SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION #### **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Chemwatch: 21-9696 Page 6 of 11 Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 21/01/2015 # Sugar Soap Powder #### Not Available #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|---------------------------------------------------|---------|-----------|------------| | trisodium phosphate | Sodium phosphate, tribasic; (Trisodium phosphate) | 5 mg/m3 | 250 mg/m3 | 1500 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---------------------|---------------|---------------| | trisodium phosphate | Not Available | Not Available | #### MATERIAL DATA For trisodium phosphate: CEL Ceiling: 5 mg/m3 (compare WEEL, 15 minute time weighted average) The workplace environmental exposure limit (WEEL) recommended by the AIHA is thought to be protective against eye and respiratory tract irritation. Exposure at high levels may cause substantial discomfort. No evidence exists for chronic or long term effects. The TLV for tetrasodium pyrophosphate (a less alkaline salt) is 5.0 mg/m3 (8 hour time-weighted average). Upper respiratory tract irritation occurred amongst employees exposed occasionally to 0.5 to 2.0 mg/m3 trisodium phosphate for up to one hour. Primary irritation of the respiratory passages has been documented in workers exposed to 7-10 mg/m3, for even short periods. Some acclimatisation to the initial irritation has also been reported. ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |------------------------------------------------------------|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection #### Sugar Soap Powder #### ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. ▶ Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these Eye and face • Alternatively a gas mask may replace splash goggles and face shields. protection ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below ▶ Elbow length PVC gloves The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact. • chemical resistance of glove material, • glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). ▶ When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Hands/feet protection ▶ When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. • Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butyl rubber. ▶ fluorocaoutchouc. polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection Barrier cream. #### Recommended material(s) Thermal hazards # GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: # "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Not Available Skin cleansing cream.Eve wash unit. Sugar Soap Powder Not Available | Material CPI | |--------------| |--------------| - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent # Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours B AUS or B1 = Acid gasses B2 = Acid Continued... Issue Date: **09/04/2014**Print Date: **21/01/2015** # Sugar Soap Powder basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | White coarse odourless powder; partially miscible with water (80 g/l). | | | |--|--|---|----------------| | | | | | | Physical state | Divided Solid | Relative density
(Water = 1) | 1.6 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | 600 | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight
(g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension
(dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component
(%vol) | Not Available | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water (g/L) | Partly Miscible | pH as a solution(1%) | 11.7 | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Presence of elevated temperatures. | | Possibility of
hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous
decomposition
products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects #### Inhaled Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Issue Date: **09/04/2014**Print Date: **21/01/2015** # Sugar Soap Powder Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substernal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation. #### Ingestion Accidental ingestion of the material may be damaging to the health of the individual. Phosphates are slowly and incompletely absorbed from the gastrointestinal tract and are unlikely (other than in abuse) to produce the systemic effects which occur when introduced by other routes. Such effects include vomiting, lethargy, fever, diarrhoea, falls in blood pressure, slow pulse, cyanosis, carpal spasm, coma and tetany. These effects result following sequestration of blood calcium. Ingestion of large amounts of phosphate salts (over 1 gm for an adult) may produce osmotic catharsis resulting in diarrhoea and probably, abdominal cramp. Large doses (4-8 gm) will almost certainly produce these effects in most individuals. Most of the ingested salt will be excreted in the faeces of healthy individuals without producing systemic toxicity. Doses in excess of 10 gm may produce systemic toxicity. # Skin Contact The material can produce severe chemical burns following direct contact with the skin. Open cuts, abraded or irritated skin should not be exposed to this material Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep. # Eve destruction When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. #### Chronic Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Dogs given daily doses of sodium phosphate dibasic for 9-22 weeks showed calcium deposits in the kidneys (nephrocalcinosis) with disseminated atrophy of the proximal tubule. Animals fed on sodium phosphate dibasic and potassium dihydrogen phosphate, in both short- and long-term studies, showed increased bone porosity; hyperparathyroidism and soft tissue calcification were also evident. | Curan Caan Baudan | TOXICITY | IRRITATION | |---------------------|--------------------------------------|--------------------------------| | Sugar Soap Powder | Not Available | Not Available | | | TOXICITY | IRRITATION | | trisodium phosphate | Dermal (rabbit) LD50: 7940
mg/kg* | - moderate* | | | Oral (rat) LD50: 6500 mg/kg* | *[CCINFO - Monsanto] | | | Oral (rat) LD50: 7400 mg/kg | Eye (rabbit):(FSHA) Corrosive* | | | | scale of 8.0 | | | | Skin (rabbit):(FSHA) 3.3 on a | | | Not Available | Not Available | | | I | | # Sugar Soap Powder * Value obtained from manufacturer's msds unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances #### Sugar Soap Powder, TRISODIUM PHOSPHATE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. | Acute Toxicity | 0 | Carcinogenicity | 0 | |--------------------------------------|----------|-----------------------------|---| | Skin
Irritation/Corrosion | * | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single
Exposure | 0 | | Respiratory or Skin
sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: ✓ – Data required to make classification available 🗶 – Data available but does not fill the criteria for classification Issue Date: 09/04/2014 Print Date: 21/01/2015 Data Not Available to make classification #### **CMR STATUS** Not Applicable ## **SECTION 12 ECOLOGICAL INFORMATION** # **Toxicity** #### NOT AVAILABLE | Ingredient | Endpoint | Test Duration | Effect | Value | Species | BCF | |---------------------|---------------|---------------|---------------|---------------|---------------|---------------| | trisodium phosphate | Not Available | May cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. A lake undergoing eutrophication shows a rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Shore algae cause ugly muddying, films and damage to reeds. Decay of these algae causes oxygen depletion in the deep water and shallow water near the shore. The process is self-perpetuating because anoxic conditions at the sediment/water interface causes the release of more adsorbed phosphates from the sediment. The growth of algae produces undesirable effects on the treatment of water for drinking purposes, on fisheries, and on the use of lakes for recreational purposes. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------|-------------------------|------------------| | trisodium phosphate | HIGH | HIGH | ### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------|------------------------| | trisodium phosphate | LOW (LogKOW = -0.7699) | # Mobility in soil | Ingredient | Mobility | |---------------------|----------------| | trisodium phosphate | HIGH (KOC = 1) | Chemwatch: **21-9696**Version No: **3.1.1.1** Page 11 of 11 Sugar Soap Powder Issue Date: **09/04/2014**Print Date: **21/01/2015** #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - ▶ Disposal (if all else fails) # Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS # **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture trisodium phosphate(7601-54-9) is found on the following regulatory "Australia Inventory of Chemical Substances (AICS)" #### **SECTION 16 OTHER INFORMATION** #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |---------------------|-----------------------| | trisodium phosphate | 7601-54-9, 96337-98-3 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: #### www.chemwatch.net/references The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.